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Some Properties of T-Septum Waveguides

YANG ZHANG anDp WILLIAM T. JOINES, MEMBER, IEEE

Abstract — Equations and curves giving cutoff frequency and impedance
are presented for rectangular waveguide having a T-septum on one or both
sides. It is shown that the T-septum waveguide has a lower cutoff frequency
and wider bandwidth than a ridged waveguide of the same gap parameters.
The impedance characteristic is shown to be almost the same as that of the
ridged guide. Equations and charts are presented to facilitate the design of
T-septum waveguides. Experimental measurements show a good agreement
with the theoretical predictions. The theoretical results are obtained by the
formulation of an integral eigenvalue equation which is subsequently
solved numerically by application of the Ritz—Galerkin method. The
eigenvalue spectrum is also discussed.

I. INTRODUCTION

IDGED WAVEGUIDES have been investigated for

many years. Conclusions are that placing ridges in-
side a rectangular guide can greatly increase both the
cutoff wavelength and the bandwidth of the dominant
mode [1}-[4]. These features can be further improved by
dielectric loading [5] or by adding more ridges in the guide
[6].

A significant improvement in the ridged waveguide can
be obtained by changing the shape of the ridge into a
T-shaped septum. This was suggested by Mazumder and
Saha [7], [8] in their preliminary analysis of a double
T-septum waveguide, which showed a decrease in the
cutoff frequency of the dominant mode. Our more exten-
sive analysis of the T-septum waveguide predicts a much
greater bandwidth than that obtained by Mazumder and
Saha. It appears that they have used an incorrect eigen-
value for the second lowest mode. The calculated results
presented herein are verified by experimental measure-
ments on a T-septum waveguide constructed in accordance
with our design equations. The difference between theory
and experiment is less than 10 percent and is well within
the limits of experimental error.

To facilitate a more complete study of the T-septum
waveguide, this paper formulates an integral eigenvalue
problem. The homogeneous equations are solved numeri-
cally by the Ritz—Galerkin method [9]-[11] to yield a
generalized matrix eigenvalue problem. The generalized
eigenvalue problem is solved by applying a solution devel-
oped by Barlow and Jones [12]. The analysis presented in
this paper will be restricted to TE,, and TE,, modes. The
result of this investigation is a complete set of equations
and charts, with which one can design any waveguide of
this form. It is hoped that this design ability will lead to
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new application of these waveguides, and to the investi-
gation of other shapes and forms.

II. FORMULATION OF INTEGRAL
EIGENVALUE EQUATION

The geometry of the T-septum waveguide is illustrated
in Fig. 1. As is often the case, two symmetrical T-septa are
assumed for the double T-septum guide. This symmetrical
system may be analyzed in the same way as the single
T-septum guide by considering one of the half-sections
formed by introducing a conducting plane, as shown in
Fig. 1(a). The aspect ratio of the half-section is b/2a.
With this taken into consideration, we proceed with our
analysis of the single T-septum guide. The results are easily
applied to the symmetrical double T-septum guide (DTSG).

The single T-septum guide (STSG) and the coordinates
used in our analysis are illustrated in Fig. 1(b). The TE
modes of the fields are derivable from the Hertzian poten-
tial {13] of the form

glx.y) _,
e ¢ w

where g(x, y) is an unknown function to be determined.
The scalar function g(x, y) satisfies the wave equation

vig(x,y)+k2g(x,y)=0 (2)

where k_ is a waveguide eigenvalue and the propagation
constant vy is given by

ATk k> k,
Y= (3)
K2—k?  k<k,

where j=v—1 and k= w\/;fe_ . The scalar potential func-
tion is related to the electric and magnetic fields by the
equations

E=e¢""a,Xv,g(x,y)

II,=a,

(4a)
Y k?
H=——e"v,g(x,y)+——g(x,y)e "a,. (4b)
Jeop joop

We are interested only in the transverse components of the
fields, and therefore we may define the basis fields via

(5a)
(5b)

where Z, =1/Y, =v/jop is defined as the wave imped-
ance of the guide.

e,=a,xv,g(x,y)
h,=—Ye Xa,
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Fig. 1. Geometry of (a) double T-septum guide and (b) single T-septum

guide.

The boundary conditions (BC’s) require that the tangen-
tial electric field and normal magnetic field vanish on the
conductors, or, equivalently, that n-v,g(x, y)=0 on a
metallic boundary and g(x, y) =0 on a magnetic
boundary, where n is normal to the boundary. We there-
fore find in region 1 (w/2 < |x|<5/2,1, < y < b) that

2 w nw
gl(xa y)= Z nlnCOSkxln(x__z—)cos ¢! (y_tl) (6)
1

n=0

where

(7a)
(7b)

In region 2 (0 < |x| <5/2,0 € y <), we find that

(3)

X . ma
gZ(X’ y) = Z 'I’)zmSll’lkxszCOST(y“t).

m =0

In region 3 (s/2 < |x| € a;,0 < y < b), we find that

o0 p7
g3(x’ y): Z n3pCOSkx3p(x_a1)COS—b—(y_b) (9)
p=0

where k,,, and k,,, are defined similarly to k,,. Sub-
stituting (6), (8), and (9) into (5a) and performing the
operations, we then find the transverse electric fields in the

i —cotk,,,d na
n=

¢} (ntllkxln
X cotk,,,h
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three regions as
wy  nw
ex,) = L | coska (x5 Jsin T,
1
i w na
—kxl,,smkxl,,(x——)cos7(y‘—tl)
1

- ay] (10a)

brd mar
e(x,y) = 2 nz,,.[ i K ki (1),

ma
+ k5 cosk ., X COS -—t——(y - t)ay] (10b)

and

. P
e3(x’ y) Z n}p[ COSkx3p(‘x 1)S1n_b—(y—b)ax

7
—k,,sink 3, (x — a;)cos %—(y - b)ay]. (10¢)

At x=s5/2, the BC’s require that the tangential electric
and magnetic ficlds be continuous. Additionally, the
tangential electric fields should vanish on the conducting
walls of the septum. Applying these conditions, we obtain
the following expressions for the coefficients 7,,, 1,,,, and

N3p:
_ bE nw d
) e —t
Nin e,,t’k,d,,sinkxlna!.[t1 gap;(y)cos " (y—t,)dy
(11a)
1
Mom = ngapz(y)COS_(y_[) dy
smthzmcoskxzm2
(11b)
1 E b)d
o pbk smkx3ph{f gaP1(y)cos—(y )y
t pm
0
where
_/ 1 i=0
“T\12 i=o0.

The continuity of (6), (8), and (9) at the junctions between
regions yield the following integral equations:

b nw
cos—(y —1,) [ Egap,cos —(y—1,) dy
tl 1 5t

= L T e (=) [Eani () eos T (-0 o+ [Bams(n)eos T (r-0) ) (120

=0 epbkx3p

at the junction of regions 1 and 3, and

tank,,,s/2 mar
tk .,

m Xzm

X, cotk,s,h

=X

p=0 €pbkx3p

pm b pT t p7
cos—(y—b){f Egapl(y)COSM(y~b)dy+ngapz(y)cos—(y—b)dy}
b 4 b 4] b

" mm
cos —(y = 1) [Egapy(y)cos —(y~1) dy
0 t

(12b)
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at the junction of regions 2 and 3. Note that we have
assumed w’/b to be very small or approaching zero in
matching the electric fields. In our experimental model, we
used w’/b = 0.05, but we have not tested larger Values of
w’/b.

Equation (12) is an integral eigenvalue problem. An
exact analytical solution to the equation is not possible.
However, a numerical solution may be obtained by the
application of the Ritz—Galerkin method.

III. FORMULATION OF MATRIX EIGENVALUE
PROBLEM AND ITS NUMERICAL SOLUTION

Recently, the Ritz-Galerkin technique was applied to
the analysis of double ridged waveguide [6], [11], [14]. This
technique consists of expanding the unknown functions in
terms of suitable known functions, and then requiring that
the resultant equations be orthogonal to each expansion
function. A matrix equation thus obtained may subse-
quently be solved by matrix theory. In the present case, the
solution .is. complicated by the fact that we have two
junction regions in the same cross-sectional plane.

Proceeding with the solution, (10) leads us to expand the
unknown junction fields in the eigenfunctions of reglons 1
and 2 as

J .

J?T

Egap,(y)= ) 4,cos 7(y -1) (13a)
J=0 1

and

E gap,(y) = Z B, cos——(y—t) (13b)

=0
Substituting (13) into (12) and taking the inner products of
the resultant equations with cos 7(y —¢;) and cos F-(y —
t), respectively, as suggested by the Ritz—-Galerkin method,
we obtain the following equations:
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where the H,(k_) matrix elements are the coefficients of
the unknown vector 4, and the Hy(k,) elements are the
coefficients of vector B, where

[A] = [Al’A27"',
[B] = [BlaBza”'»

4,17
B,]".

Equation (18) is a general matrix eigenvalue problem. The
eigenvalues are solutions of the nonlinear equation

det|HA(kc)iHB(kc) | =0

(19)
(20)

(21)

The smallest eigenvalue corresponds to the largest cutoff
wavelength of the TE,, mode. The vector [ A4} B], which is
the solution of (18) for a particular k_, is the associated
eigenvector, which is related to the coefficients v, 1,,,,
and 75, by

—An
N 22
N1in kxln Sin kxlnd ( a)
Bm
B e amcosk s /2 (22b)
1 J
= AP, +BP,. ). (22¢
"7 €,bk,, sink,, h EO( RV S 2p)- (220) ‘

The nonlinear equation (21) may be solved by applying
a solution developed by Barlow and Jones [12]. The associ-
ated dominant eigenvectors may be determined by the
application of a technique obtained by Montgomery [11}.
This method makes each element of the solution vector
arbitrary successively and calculates the error norm of
each solution vector. By choosing the solution vector with
the smallest norm, the dominant eigenvector is determined.
Fig. 2 illustrates a typical eigenvalue spectrum. Mathe-

J, cotk,,d J [ L
Z — e 1d(g— )+ Z TP, P, |4,+ L | X T,P,,P,|B=0 (14a)
= kg p= J=0lp=0
I | & J | ~tank,,,s/2 _ L -
= [ L, TP ] E [ =)+ L PP B =0 (14)
j=0]p=0 = x2q p=0
for ¢ =10,1,2,- -+, J, and where matical singularities of (21) should be carefully avoided in
cotk 5 h solving (21) to obtain the eigenvalues.
= (15)
’ €,bk,s,

' b T pT
Pljp=f cos7(y—t1’)cos——b (y=b)dy (16)
h 1

‘ Jm pr
szp=j(.:cos—t—(y—t)cos—b—(y—b)dy. (17)

The infinite summations have been truncated to (J+1)
terms in regions 1 and 2 and (L +1) terms in region 3.
Equation (14) may be expressed in matrix form as

Ak iy (k)] 4| =01 (18)

IV. NUMERICAL RESULTS

In order to check the correctness of the analysis, single-
ridged waveguides of various geometries were analyzed, for
which case w=y; i.e., the septum becomes a solid ridge.
Rapid convergence was observed when J and L were
increased. For J >12 and L > 15, the calculation is precise
to the third digit after the decimal point. A comparison of
the present results with those from Hopfer [2] is illustrated
in Table 1. The data illustrate that the method yields good
agreement with the known results for the single-ridged
guide. The impedance comparison is also given in Table I,
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Fig. 2. Plot of typical eigenvalue equation.

TABLE 1
COMPARISON WITH OTHER THEORY
Hopfer {2] Present
t
; Aao/a | Moo/ Ao | Zo Aa0/a | Ao/ Ao Z,
0.10| 4.643 5.09 69.93 | 4.6278 5.1434 70.033
0.15| 4.072 442 90.91 | 4.0606 4.5136 90.586
0.20 | 3.701 3.94 108.69 | 3.7137 4.1286 107.828
0.25| 3.425 3.63 128.21 | 3.4179 3.8078 126.695
0.30 | 3.206 3.38 144,93 | 3.1984 3.5607 143,995
0.35| 3.023 3.14 161.29 | 3.0148 3.3616 161.280
Aciy/a
10.0 1= [ TT T T T ] 7"
9.0+— . |-—s——~|L L, —
ST e .
B.0+— - .
— b/a=0.25 w'/b=0.05 —

w/a=0.10

Fig. 3. Variation of normalized cutoff wavelength (A,,/a) of domi-

nant TE;, mode with gap width ratio (s /a).

which will be explained in Section V. All the subsequent
computations were carried out with J =12 and L =15.

In Figs. 3 and 4, the normalized cutoff wavelengths
A0/a of the TE,, and TE,, modes are plotted as a
function of s/a, with ¢ /b as a parameter. Fig. 5 shows the
bandwidth characteristics of the STSG. The aspect ratio
b/a for these curves is fixed at 0.25. Figs. 6-8 gives
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Fig. 4. Variation of normalized cutoff wavelength (A .y /a) of TEy,
mode with gap width ratio (s /a).
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Fig. 5. Variation of bandwidth (A 4/ 5) characteristics with gap
width ratio (s /a).

Acd/a
110 T |

Fig. 6. Variation of normalized cutoff wavelength (A /@) of domi-
nant TE;, mode with gap width ratio (s/a). Solid lines: single
T-septum guide: dashed lines: single ridged guide of the same geometry
with a solid ridge (w = s).
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width ratio (s/a). Solid lines: single T-septum guide; dashed lines:
single ridged guide of the same geometry with a solid ridge (w = s).

another set of data for b/a=0.45. Also superposed as
dashed lines in Figs. 6 and 8 are the corresponding proper-
ties of SRG[2] with identical ¢ /b and s/a, subject to the
error in reproducing the curves. These curves are directly
applicable to a double T-septum guide cross section of
identical s/a and ¢/b ratios, but of an aspect ratio b/a
which is twice that of the DTSG. Note that the cutoff
wavelength increases monotonically with s/a for fixed
t/b, and is always greater than that for SRG. The band-
width (Fig. 8) of the STSG is much greater than that of the
SRG when s/a is greater than 0.2, and reaches a peak
around s/a =0.7. The bandwidth of the STSG can be
made even wider if optimum parameters are chosen.

V. T-SEPTUM WAVEGUIDE CHARACTERISTIC IMPEDANCE

To design a transition between the T-septum waveguide
and a coaxial line or between two dissimilar waveguides,
the impedance of the waveguide is needed. Usually, the
impedance definition from power considerations is desired,
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ie.,
o
=3P P (23)

where P, is the average power carried by the guide, and ¥},
is the peak voltage across the center of the septum, which
can be expressed as

t
Vo=f0ey(x=0,y) dy.

Employing (10b) and (22b), we find that
V,=B !
0 Ocosks/2’

(24)

(25)
The average power is given by
1
- 2
77, Jfle sy (26)

where S is the cross section of the guide. Recalling (10), we
can express (26) as

1
P0=_[Il+12+l3] (27)
Z,

where
© 1
L= Y Zu,
1 n-04 1
d sin2k,,,d
: (nvr)z—,(1+————————)
[ 4 2k,,,d
, sin2k,,,d
+2e Jk2,td 1——2k_,;"7 (28a)
© 1
L= E 8"'2m
m=0
28 sink,,,.s
l:(m”) t( kamS )
sink,,,
+2emk§2mm(1+-————3——)} (28b)
kx2ms
and
© 1
Li=Y -
3 p=04 3
h sin2k
2 x3p
. — 14—
[(P"T) b( 2kx3p )
sin2k,,,
+2¢ kﬂpbh(l——il_;;—h_);l. (28¢)
Hence
Zoo
z= (29)

V1+(A/A,)
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Fig. 9. Characteristic impedance at infinite frequency versus gap width
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Fig. 10. Characteristic impedance at infinite frequency versus gap width
ratio (s/a) with b/a = 0.45.

where Z_ is the characteristic impedance at infinite
frequency:

Bt*

s
* € 2(I,+I,+I,)cos?k,s /2

(30)

The correctness of the impedance equation was con-
firmed by calculations on the SRG as shown in Table 1. A
difference of less than 1 percent was observed.

Figs. 9 and 10 illustrate the impedance quantity Z_ for
aspect ratios b/a = 0.25 and 0.45, respectively. For fixed
t/b, the impedance decreases monotonically with increas-
ing s/a. On the other hand, for fixed s/a, Z_ increases
with ¢/b. Compared with that of SRG, Z_ does not
change dramatically.

The characteristic impedance curves may also be applied
to DTSG, but their values must be doubled, and the aspect
ratio b/a has to be treated as in the case of the cutoff
wavelength.
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Fig. 11. The cross section of the experimental STSG.
TABLE 11
COMPARISON OF CALCULATED AND MEASURED RESULTS
Parameters Calculated | Measured | Error
Cutoff of TE,, mode (MHz) 200 216 8%
Cutoff of TE,, mode (MHz) 1085 1092 0.65%
Bandwidth 543 5.06 67%
Characteristic impedance 325 36.02 10.8%
Z,(2)
VI. EXPERIMENTAL VERIFICATION

A single T-septum waveguide having the cross-sectional
dimensions shown in Fig. 11 has been tested. The wave-
guide parameters are b/a =0.25, t/b=0.20, s/a = 0.50,
w’/b=0.05, and w/a = 0.10. The electrical parameters of
the waveguide were measured on a Hewlett Packard model
8754A Network Analyzer. The cutoff frequency of the
TE,, mode was determined by measuring the frequency at
the point where the insertion loss dropped to —3 dB, and
the cutoff of the TE,, mode was found by forming the
waveguide as a resonant cavity and measuring the resonant
frequency of the mode corresponding to the TE,;,. The
waveguide cavity had the cross-sectional dimensions shown
in Fig. 11. Using the network analyzer, the swept-frequency
display of insertion loss versus frequency showed that the
next resonant dip above the TE,, mode occurred at the
predicted frequency of the TE,, mode. The characteristic
impedance of the waveguide was determined by the method
described in [15]. Using this method, one measures the
normalized input impedance which traces a circle on the
Smith chart as frequency is varied. The center of the circle
has a real component equal to the normalized characteris-
tic impedance of the waveguide.

A comparison of the calculated parameters and the
measured results is given in Table I1. The calculated data
are from Figs. 3-5 and 9. The error column signifies the
agreement between the calculated and the measured values
of each parameter. The experimental results checked with
the T-septum waveguide calculated cutoffs to within a few
percent. The calculated and measured characteristics im-
pedances agree to within 10.8 percent. A tapered length of
stripline was used to connect the waveguide to the 50-
coaxial line. This connection would affect the impedance
measurement to some extent, and might account for the
error obtained.

VIIL

The T-septum waveguide has been analyzed to develop
appropriate equations and curves for design. The design
curves show that the cutoff wavelength of the dominant

DiIscussSION
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TE,, mode for these guides is much greater, when s/a >

0.3, than that of the conventional ridged guides with the.. -

same geometries.- The bandwidth of the guide keeps in-
creasing when s/a > 0.3, and is much greater than that of
the SRG. For example, the STSG shown in Fig. 6 with
t/b=0.10 and s/a = 0.70 would have a cutoff wavelength
of 8.290a and a bandwidth (X ;4 /A o) of 8.203, while the
SRG of the same geometry has a cutoff wavelength of
5.157a and a bandwidth of 3.25. An improvement of 1.6
times that of the SRG has been achieved for the cutoff
wavelength; and 2.5 times that of the SRG for the band-
width. Note that the bandwidth curves are different from
those suggested in [7] and [8], in which the correct second
lowest eigenvalues were not taken into account. The char-
acteristic impedance of the guides has been compared with
that of the SRG, and no dramatic change was found.

The agreement between the calculated results and the
measured values is within about 10 percent, as shown in
Table II. We expect that the percent error would be
reduced by more extensive measurements on waveguides
having a wide range of dimensions. For most engineering
applications, the curves and equations presented should be
quite adequate.

‘Further studies are in progress, which include de-
termination of the attenuation in the guides and their
power-handling capabilities.
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