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Some Properties of T-Septum Waveguides

YANG ZHANG AND WILLIAM T. JOINES, MEMBER, IEEE

Ab.$tract — Equations and curves giving cutoff frequency and impedance

are presented for rectangular wavegnide having a T-septum on one or both

sides. It is shown that the T-septum waveguide has a lower cutoff frequency

and wider bandwidth than a ridged waveguide of the same gap parameters.

The impedance characteristic is shown to be almost the same as that of the

ridged guide. Equations and charts are presented to facilitate the design of

T-septum waveguides.Experimental measurementsshowa goodagreement
with ‘the theoretical predictions. The theoretical results are obtained by the

formulation of an integraf eigenvahre equation which is subsequently

solved numerically by application of the Ritz–Galerkin method. The

eigenvalue spectrum is afso discussed.

I. INTRODUCTION

R IDGED WAVEGUIDES have been investigated for

many years. Conclusions are that placing ridges in-

side a rectangular guide can greatly increase both the

cutoff wavelength and the bandwidth of the dominant

mode [1]–[4]. These features can be further improved by

dielectric loading [5] or by adding more ridges in the guide

[6].
A significant improvement in the ridged waveguide can

be obtained by changing the shape of the ridge into a

T-shaped septum. This was suggested by Mazumder and

Saha [7], [8] in their preliminary analysis of a double

T-septum waveguide, which showed a decrease in the

cutoff frequency of the dominant mode. Our more exten-

sive analysis of the T-septum waveguide predicts a much

greater bandwidth than that obtained by Mazumder and

Saha. It appears that they have used an incorrect eigen-

value for the second lowest mode. The calculated results

presented herein are verified by experimental measure-

ments on a T-septum waveguide constructed in accordance

with our design equations. The difference between theory

and experiment is less than 10 percent and is well within

the limits of experimental error.

To facilitate a more complete study of the T-septum

waveguide, this paper formulates an integral eigenvalue

problem. The homogeneous equations are solved numeri-

cally by the Ritz-Galerkin method [9]–[11] to yield a

generalized matrix eigenvalue problem. The generalized

eigenvalue problem is solved by applying a solution devel-

oped by Barlow and Jones [12]. The analysis presented in

this paper will be restricted to TEIO and TE20 modes. The

result of this investigation is a co,mplete set of equations

and charts, with which one can design any waveguide of

this form. It is hoped that this design ability will lead to
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new application of these waveguides, and to the investi-

gation of other shapes and forms.

II. FORMULATION OF INTEGRAL

EIGENVALUE EQUATION

The geometry of the T-septum waveguide is illustrated

in Fig. 1. As is often the case, two symmetrical T-septa are

assumed for the double T-septum guide. This symmetrical

system may be analyzed in the same way as the single

T-septum guide by considering one of the half-sections

formed by introducing a conducting plane, as shown in

Fig. l(a). The aspect ratio of the half-section is b/2a.

With this taken into consideration, we proceed with our

analysis of the single T-septum guide. The results are easily

applied to the symmetrical double T-septum guide (DTSG).

The single T-septum guide (STSG) and the coordinates

used in our analysis are illustrated in Fig. l(b). The TE

modes of the fields are derivable from the Hertzian poten-

tial [13] of the form

(1)

where g( x, y) is an unknown function to be determined.

The scalar function g(x, y) satisfies the wave equation

V:g(x, y)+ J%:g(x, y) = o (2)

where k. is a waveguide eigenvalue and the propagation

constant y is given by

(3)

where j = n and k = Q@. The scalar potential func-

tion is related to the electric and magnetic fields by the

equations

E = e-yzaz X V,g(x, y) (4a)

H=–— y e–yzvfg(x, y )+ ~g(x, y)e-yzaz. (4b)
jup

We are interested only in the transverse components of the

fields, and therefore we may define the basis fields via

et=aZXV,g(x, y) (5a)

h,= – Y~e, Xaz (5b)

where Z~ =1/ Y~ = y/jap is defined as the wave imped-

ance of the guide.
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(a) (b)

Fig. 1. Geometry of (a) double T-septum guide and (b) single T-septum
guide,

The boundary conditions (BC’S) require that the tangen-

tial electric field and normal magnetic field vanish on the

conductors, or, equivalently, that n “vfg(x, y) = O on a

metallic boundary and g(x, y) = O on a magnetic

boundary, where n is normal to the boundary. We there-

fore find in region 1 ( w\2 < 1x1< s/2, tl < y < b) that

gl(x,~) = ii m.coskxln (1x–; COS:(y–tl) (6)
~=o 1

where

k xl n ‘{ ! .

In region 2 (O< 1.x1< s/2, 0< y < t ), we find that

three regions as

– kX1. sin kX..
()

x–f cos~(y-–tl)aY
I

(lOa)

m

e2(xs~)= X ’02m
[

~ ‘ink.t2mxsin ~(Y– ‘)ax
~=o

+ kX2~ 1coskX2~xcos Y(Y - t )a, (lOb)

and

cc

[

flcoskxqP(x -al)sin~(Y-b]a~e~(x, y)= ~ ~qp b
~=o

I–kX3Psin kX3P(x- al)cos~(y-b)aY . (1OC)

At x = s/2, the BC’S require that the tangential electric

and magnetic fields be continuous. Additionally, the

tangential electric fields should vanish on the conducting

walls of the septum. Applying these conditions, we obtain

the following expressions for the coefficients qlu, qz~, and

713p:

gz(x, y) = f qz~sinkX2~xcos ~(y–t).
m=o

In region 3 (s/2< 1x1< al, O < y < b), we find that

g3(x,y) = 5~3pcos~x3p(x–al)cosf(y–~)
~=o

(8)

(9)

where kX2~ and kXJP are defined similarly to kX1~. Sub-

stituting (6), (8), and (9) into (5a) and performing the

operations, we then find the transverse electric fields in the

1

713p = ~ bk
{J

bEgapl(y)cos $(y–b)dy

P x.p Sin kx-ph tl

J
}

+ ‘Egap2(y) cosf(y–b)dy (llc)
o

where

( 1 i=o

6’= 1/2 i#O.

The continuity of (6), (8), and (9) at the junctions

regions yield the following integral equations:

E – cot kXl~d
cos~(y– tl)~bEgapl cos~(y–tl)dy

Il=o ~Jikxln tl

= E c:t:3:;

(

cos~(y–b) ~bEgapl(y) cos~(y– b)dy+~gap2(y)cos ~(y–b)dy
*=() p x Cl )

at the junction of regions 1 and 3, and

m tan kX2Ms/2
E cos~(y– t)/~Egap2(y)cos ;(y-t)dy

nl=o c~tkX.~ o

= 2 c:;’:;
(

cos$(y–b) ~bEgapl(y) cos~(y– b)dy+~gap2(y) cos~(y– b)dy
p=o p x tl }

between

(12a)

(12b)
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at the junction of regions 2 and 3. Note that we have

assumed w’/b to be very small or approaching zero in

matching the electric fields. In our experimental model, we

used w ‘/b = 0.05, but we have not tested larger values of

w’/b.

Equation (12) is an integral eigenvalue problem. An

exact analytical solution to the equation is not possible.

However, a numerical solution may be obtained by the

application of the Ritz-Galerkin method.

III. FORMULATION OF MATRIX EIGENVALUE

PROBLEM AND ITS NUMERICAL SOLUTION

Recently, the Ritz-Galerkin technique was applied to

the analysis of double ridged waveguide [6], [11], [14]. This

technique consists of expanding the unknown functions in

terms of suitable known functions, and then requiring that

the resultant equations be orthogonal to each expansion

function. A matrix equation thus obtained may subse-

quently be solved by matrix theory. In the present case, thi

solution. is complicated by the fact that we have two

junction regions in the same cross-sectional plane.

Proceeding with the solution, (10) leads us to expand the

unknown junction fields in the eigenfunctions of regions 1

and 2 as

Egapl(y) = ~ A,cos J~(y–tl) (13a)
~=o

and

Substituting (13) into (12) and taking the inner products of

the resultant equations with cos ~(y – tl) and cos ?(Y –

t.), respectively, as suggested by the Ritz-Galerkin method,

we obtain the following equations:
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where the HA ( kC) matrix elements are the coefficients of

the unknown vector xl, and the H~( kC) elements are the

coefficients of vector B, where

[A]= [A1, A2,..., AJ]T (19)

[B]= [B1, B,,.. O,B~]~. (20)

Equation (18) is a general matrix eigenvalue problem. The

eigenvalues are solutions of the nonlinear equation

CM [HA(kc)!llB(k,)1=0. (21)

The smallest eigenvalue corresponds to the largest cutoff

wavelength of the TE ~0 mode. The vector [ ~~ B], which is

the solution of (18) for a particular kC, is the associated

eigenvector, which is related to the coefficients ql~, qz~,

and q3P by

(22a)

B.
V2* = k

x2m Cos ‘x2ms/2

(22b)

1
‘713J1= ~ (~j~~jp + BJ~zjP) (22c)

h.cPbkX3P sin kx3p J = o

The nonlinear equation (21) may be solved by applying

a solution developed by Barlow and Jones [12]. The associ-

ated dominant eigenvectors may be determined by the

application of a technique obtained by Montgomery [11].

This method makes each element of the solution vector

arbitrary successively and calculates the error norm of

each solution vector. By choosing the solution vector with

the smallest norm, the dominant eigenvector is determined.

Fig. 2 illustrates a typical eigenvalue spectrum. Mathe-

i
[

cot kX1~d

‘ qlAJ+$ol:o~p1qppc@(q – j)+ ~ TPP,,PP1
J = , ‘Xlq ~=o

:o[$oTp1Jp2qlAJ+$o[-tankx2
for q = 0,1,2,. ... J, and where

cot kX3ph
Tp =

~pbkx3p

J
Pljp= bcos~; (y–~; )cos~(y–b)dy

tl

P2jp=~cos J;(y–t) cos; (y–b)dy.

k x2q

(15)

(16)

(17)

(14a)

(14b)

matical singularities of (21) should be carefully avoided in

solving (21) to obtain the eigenvalues.

IV. NUMERICAL RESULTS

In order to check the correctness of the analysis, single-

ridged waveguides of various geometries were analyzed, for

which case w =s; i.e., the septum becomes a solid ridge.

Rapid convergence was observed when J and L were—
,r, . . increased. For J >12 and L >15, the calculation is precise

The infinite summations have been truncated to IJ +1)

terms in regions 1 and 2 and (L +1) terms in region 3.

Equation (14) may be expressed in matrix form as

[H~(kc)W~(kc)] [-:-]= [01 (18)

to the third digit after the decimal point. A comparison of

the present results with those from Hopfer [2] is illustrated

in Table I. The data illustrate that the method yields good

agreement with the known results for the single-ridged

guide. ‘The impedance comparison is also given in Table I,
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Fig. 2. Plot of typicaf eigenvalue equation.

TABLE I
COMPARISON WITH OTHER THEORY

r Hopfer [2] Present

0.30 I 3.206 3.38 144,93 3.1984 3.5607 143.995

0.35 ] 3.023 3,14 I 161.29 I 3.0148 I 3.3616 I 161.280
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Fig. 3. Variation of normalized cutoff wavelength (A<lo /a) of domi.
nant TElo mode with gap width ratio (s/a).

which will be explained in Section V. All the subsequent

computations were carried out with J =12 and L = 15.

In Figs. 3 and 4, the normalized cutoff wavelengths

AC~O/a of the TE lo and TE20 modes are plotted as a
function of s/a, with t/b as a parameter. Fig. 5 shows the

bandwidth characteristics of the STSG. The aspect ratio

b/a for these curves is fixed at 0.25. Figs. 6–8 gives

Ada
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Fig. 4. Variation of normalized cutoff wavelength (AC20 /a) of TE20
mode with gap width ratio (s/a).
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Fig. 5. Variation of bandwidth (A,lo /A,20) characteristics with gap
width ratio (s/a ),
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Fig. 6. Variation of normalized cutoff wavelength (A,lo /u) of domi-

nant TEIO mode with gap width ratio (s/a). Solid lines: single
T-septum guide: dashed lines: single ridged guide of the same geometry
with a solid ridge (w =s ).
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Fig. 7. Variation of normalized cutoff wavelength (h,2./a) of TE20
mode with gap width ratio (s/a ).
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Fig. 8. Variation of bandwidth (ACIO/AC20) characteristics with gap
width ratio (s/a ). Solid lines: single T-septum guide; dashed lines:
single ridged guide of the same geometry with a solid ridge (w =s ).

another set of data for b/a = 0.45. Also superposed as

dashed lines in Figs. 6 and 8 are the corresponding proper-

ties of SRG[2] with identical t/b and s/a, subject to the

error in reproducing the curves. These curves are directly

applicable to a double T-septum guide cross section of

identical s/a and t/b ratios, but of an aspect ratio b/a

which is twice that of the DTSG. Note that the cutoff

wavelength increases monotonically with s/a for fixed

t/b, and is always greater than that for SRG. The band-

width (Fig. 8) of the STSG is much greater than that of the

SRG when s/a is greater than 0.2, and reaches a peak

around s/a = 0.7. The bandwidth of the STSG can be

,made even wider if optimum parameters are chosen.

V. T-SEPTUM WAVEGUIDE CHARACTERISTIC IMPEDANCE

To design a transition between the T-septum waveguide

and a coaxial line or between two dissimilar waveguides,

the impedance of the waveguide is needed. Usually, the

impedance definition from power considerations is desired,

773

i.e.,

v:
z=—

2P0
(23)

where PO is the average power carried by the guide, and V.

is the peak voltage across the center of the septum, which

can be expressed as

(24)vo=&’y(x=o, Y)dY”

Employing (lOb) and (22b), we find that

t
V.= B.

COS kCs/2 “
(25)

The average power is given by

1

‘o== J
Ie,l’dx dy (26)

where S is the cross section of the guide. Recalling (10), we

(27)

(28a)

(28b)

(28c)

(29)
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Fig. 9. Characteristic impedance at infinite frequency versus gap width
ratio (s/u) with b/a = 0.25.
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Fig. 10, Characteristic Impedance at infinite frequency versus gap width
ratio (s/a) with b/a = 0.45.

where Z~ is the characteristic impedance at infinite

frequency:

{

~:t 2

z*= ~ (30)
e 2(11 -t 12+ 13)cos2kcs/2 “

The correctness of the impedance equation was con-

firmed by calculations on the SRG as shown in Table I. A

difference of less than 1 percent was observed.

Figs. 9 and 10 illustrate the impedance quantity Z~ for

aspect ratios b/a = 0.25 and 0.45, respectively. For fixed

t/b, the impedance decreases monotonically with increas-

ing s/a. On the other hand, for fixed s/a, Z@ increases

with t/b. Compared with that of SRG, Z~ does not

change dramatically.

The characteristic impedance curves may also be applied

to DTSG, but their values must be doubled, and the aspect

ratio b/a has to be treated as in the case of the cutoff

wavelength.

k-- S= 15. O6-+

$
if’ ‘ -‘ ‘~j-’’”-’-”

~ -; yIt =1.51
--

s _!_ W’= 0.38

II

2 ~ A . . . . . ..A unit: cm.
w W=3. OJ

K---- a=30. /2 ——————4

Fig. 11. The cross section of the experimental STSG.

TABLE II
COMPARISONOF CALCULATEDAND MEASURED RESULTS

~

Characteristic impedance I 32.5 I 36.02 ‘ 10.8%

Zm(o)

VI. EXPERIMENTAL VERIFICATION

A single T-septum waveguide having the cross-sectionaJ

dimensions shown in Fig. 11 has been tested. The wave-

guide parameters are b/a = 0.25, t/b= 0.20, s/a= 0.50,

w ‘/b = 0.05, and w/a = 0.10. The electrical parameters of

the waveguide were measured on a Hewlett Packard model

8754A Network Analyzer. The cutoff frequency of the

TEIO mode was determined by measuring the frequency at

the point where the insertion loss dropped to – 3 dB, and

the cutoff of the TE20 mode was found by forming the

waveguide as a resonant cavity and measuring the resonant

frequency of the mode corresponding to the TE20. The

waveguide cavity had the cross-sectional dimensions shown

in Fig. 11. Using the network analyzer, the swept-frequency

display of insertion loss versus frequency showed that the

next resonant dip above the TEIO mode occurred at the

predicted frequency of the TE20 mode. The characteristic

impedance of the waveguide was determined by the method

described in [15]. Using this method, one measures the

normalized input impedance which traces a circle on the

Smith chart as frequency is varied. The center of the circle

has a real component equal to the normalized characteris-

tic impedance of the waveguide.

A comparison of the calculated parameters and the

measured results is given in Table II. The calculated data

are from Figs. 3–5 and 9. The error column signifies the

agreement between the calculated and the measured values

of each parameter. The experimental results checked with

the T-septum waveguide calculated cutoffs to within a few

percent. The calculated and measured characteristics im-

pedances agree to within 10.8 percent. A tapered length of

stripline was used to connect the waveguide to the 50-fl

coaxial line. This connection would affect the impedance

measurement to some extent, and might account for the

error obtained.

VII. DISCUSSION

The T-septum waveguide has been analyzed to develop

appropriate equations and curves for design. The design

curves show that the cutoff wavelength of the dominant
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TEIO mode for these guides is much greater, when s/a >

0.3, than that of the conventional ridged guides with the

same geometries. The bandwidth of the guide keeps in-

creasing when s/a> O.3, andismuch greater than that of

the SRG. For example, the STSG shown in Fig. 6 with

t/b = 0.10 and s/a = 0.70 would have a cutoff wavelength

of 8.290a and a bandwidth (A .lO/A .ZO) of 8.203, while the

SRG of the same geometry has a cutoff wavelength of

5.157a and a bandwidth of 3.25. An improvement of 1.6

times that of the SRG has been achieved for the cutoff

wavelength, and 2.5 times that of the SRG for the band-

width. Note that the bandwidth curves are different from

those suggested in [7] and [8], in which the correct second

lowest eigenvalues were not taken into account. The char-

acteristic impedance of the guides has been compared with

that of the SRG, and no dramatic change was found.

The agreement between the calculated results and the

measured valut% is within about 10 percent, as shown in

Table II. We expect that the percent error would be

reduced by more extensive measurements on waveguides

having a wide range of dimensions. For most engineering

applications, the curves and equations presented should be

quite adequate.

“Further studies are in progress, which include de-

termination of the attenuation in the guides and their

power-handling capabilities.
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